

Lipid exposure re-wires cellular metabolism away from glycolysis toward the serine pathway conferring oncogenic properties to non-transformed breast cells

Mariana Bustamante Eduardo¹, Gannon Cottone¹, Shiyu Liu², Flavio R. Palma¹, Maria Paula Zappia³, Abul B.M.M.K. Islam³, Elizaveta V. Benevolenskaya³, Maxim V. Frolov³, Jason Locasale², Marcelo G. Bonini¹, Navdeep S. Chandel¹, Seema Khan¹, Susan Clare¹

¹Northwestern Univ. Feinberg School of Medicine, Chicago, IL,²Duke University, Durham, NC,³University of Illinois at Chicago, Chicago, IL

Introduction

- Understanding the genesis of sporadic estrogen receptor negative breast cancer (ERnegBC) is a significantly unmet clinical need.
- Genes involved in lipid metabolism are overexpressed in the contralateral unaffected breast of women with ERnegBC (1).
- Exposure of non-transformed breast epithelial cells to lipids results in significant changes in histone PTMs and gene expression. The upregulated genes are involved in neural pathways and stemness (2)
- In vitro, lipid exposure alters histone methylation affecting gene expression and increases flux through various metabolic reactions including those involved in serine, one-carbon, glycine (SOG) and methionine.(2).
- •We hypothesized that the metabolism of lipids in preference to glucose and glutamine results in a metabolic shift toward the serine pathway increasing S-adenosylmethionine (SAM) leading to histone methylation increases and changes in gene expression.

Methods

- 13C-glucose tracing was performed in MCF-10A cells exposed to octanoic acid (OA). Targeted metabolomics was performed in MCF-10A cells exposed to OA ± PHGDH inhibitor or siRNA against PHGDH.
- ROS-induced redox changes were monitored unsing ORP1-roGFP2 based sensors in MCF-10A cells
- Alkaline comet assay was done to detect DNA breaks.
- Homologous recombination was studied in MCF-10A cells through restoration of luciferase activity from deleted substrates.
- CUT&RUN for H3K4me3 was performed in MCF-10A exposed to OA. MACS2, DiffBind and ChIPseeker were used to call and annotate peaks. HOMER was used for Transcription factor (TF) binding motif enrichment analysis.
- Single-cell RNA-Seq (scRNA-seq) was performed on primary human breast epithelial cells exposed to OA. The digital expression matrix file containing UMIs was analyzed with the Seurat package. Cell-cell communication was explored using CellChat and metabolic flux analysis was performed using Compass.

References

1. Wang, J. et al. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer. Int J Cancer 140, 2484-2497, doi:10.1002/ijc.30680 (2017).

2. Yadav, S. et al. Lipid exposure activates gene expression changes associated with estrogen receptor negative breast cancer. *npj Breast Cancer* **8**, 59 (2022). https://doi.org/10.1038/s41523-022-00422-0

Research supported by the 2023 AACR-Pfizer Breast Cancer Research Fellowship; Grant Number 23-40-49-BUST.

to glucose and glutamine results in a metabolic shift toward the de novo serine pathway increasing the production of 2-HG (A), glutathione (B) and SAM (C) which have implications for oncogenesis

This presentation is the intellectual property of the author/presenter. Contact them at mariana.bustamante@northwestern.edu for permission to reprint and/or distribute

Robert H. Lurie Comprehensive Cancer Center

Results

ive	Fibro-SFRP4	•	Macro-m1-CCL
I	LummHR-active	•	Macro-m2
n_switched	LummHR-major	•	Macro-m2-CXC
n_unswitched	LummHR-SCGB	•	mDC
activated	Lumsec-basal	•	Mono-classical
naive	Lumsec-HLA	٠	NK
Tem	Lumsec-KIT	•	NK-ILCs
Th	Lumsec-major	•	NKT
Th-like	 Lumsec-myo 	•	pericytes
Treg	 Lumsec-prol 	•	plasma_lgA
activated	 Lymph-immune 		plasma_lgG
Tem	 Lymph-major 	•	Vas-arterial
Trm	Lymph-valve1	•	Vas-capillary
-major	Macro-IFN	•	Vas-venous
-matrix	Macro-lipo	•	vsmc
-prematrix	Macro-m1	•	NA

Cell subtype	% Veh	% OA	Cell subtype	% Veh	%OA
basal	10.5	11.2	Fibro-major	0.7	4.
LummHR-active	13.5	6.1	Fibro-matrix	7.6	0.
LummHR-major	3.5	20.3	pericytes	6.2	8.
LummHR-SCGB	2.1	3.2	Vas-arterial	3.32	5.5
Lumsec-basal	19.4	8.5	Vas-capillary	20.90	4.6
Lumsec-HLA		9.4	Vas-venous		
Lumsec-KIT	0.5	0.2	vsmc	1.60	3.2
Lumsec-major	0.5	0.1			
Lumsec-myo	1.0	0.8			
Lumsec-prol	5.1	0.0			

<u>C</u> Metabolism of lipids results in a metabolic shift toward the serine, one-carbon and glycine (SOG) pathways increasing flux to methylation and changes gene expression

