M Northwestern Medicine[®] Feinberg School of Medicine

Introduction

- Previous studies have identified sympathetic nervous system (SNS) signaling as a critical regulator of arterial wall homeostasis with potent inflammation vascular effects and on remodeling. [1]
- Our prior investigation of decellularized aortic conduits was marked by significant pathologic remodeling, perhaps underpinned by lack of innervation. [2] Sympathetic dysfunction may contribute the pathogenesis aortic to OŤ occlusive disease including diseases, aneurysms, and related vascular complications.

HYPOTHESIS:

Dysfunction of aortic sympathetic innervation is a critical contributor to pathologic remodeling and aortic morphology on extended follow-up.

Methods

Results

Denervated aortas exhibited variations in intima-media thickness with b-segment exhibiting the lowest intima-media thickness.

Representative H&E images. Scale bar = $100 \mu m$.

Phenol-Based Denervation Induces Sustained Abdominal Aortic Remodeling

Calvin Chao, MD¹, Caitlyn Dang, BS¹, Nidhi Reddy, BA¹, Sara Alharbi, MS¹, Jimmy Doan², Akashraj Karthikeyan², Brandon Applewhite, PhD², Bin Jiang, PhD^{1,2} ¹Division of Vascular Surgery, Department of Surgery, Northwestern Feinberg School of Medicine, Chicago, IL; ²Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL

Denervated

a b c d **Aortic Segment** Denervated

increased collagen content versus sham control.

Phenol

Sham

Representative Verhoeff-Van Gieson images. Scale bar = 100 μ m.

Representative Masson's Trichrome images. Scale bar = 100 μ m

Denervated aortas revealed a significant decrease in nerve fiber density and medial alpha smooth muscle actin (α -SMA).

a b c d **Aortic Segment**

denervated aortas demonstrated significantly increased elastin breakage scores versus sham controls.

Adventitial and medial collagen content of aortas was similar between groups. Sex stratification indicated denervated females exhibited

denervation versus sham control.

- 1. Extracellular Matrix elastin breakage scores

IMPACT:

Our investigation sympathetic denervation induced morphologic and features partially aortic pathologies. These findings underscore the importance of integrating innervation in vascular disease states with consideration of the SNS as a therapeutic target cardiovascular disease broadly.

Acknowledgements & Funding

- Research Service Award 5T32HL094293-14

[1] Cañes L, Alonso J, Ballester-Servera C, Varona S, Escudero JR, Andrés V, et al. Targeting Tyrosine Hydroxylase for Abdominal Aortic Aneurysm: Impact on Inflammation, Oxidative Stress, and Vascular Remodeling. Hypertension. 2021;78(3):681-92.

[2] Jiang B, Suen R, Wang JJ, Zhang ZJ, Wertheim JA, Ameer GA. Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials. 2017;144:166-75.

Northwestern CENTER FOR ADVANCED REGENERATIVE ENGINEERING

Significant aortic adventitial angiogenesis is observed after phenol

Conclusions

Topical phenol-based Remodeling: denervation results in loss of elastin morphology with increased

2. Nerve Fiber Density: Denervated aortas demonstrate significant loss of sympathetic nerve fiber density on extended follow-up

3. Loss of Vascular Smooth Muscle Cells: Significant loss of α -SMA and medial cellular density are observed after phenol denervation

4. Adventitial Angiogenesis: Marked angiogenesis is observed within the adventitia after phenol-based denervation

5. Sexual Dimorphism: Dimorphic response to phenol-based denervation include collagen content, baseline nerve fiber density, and medial vascular smooth muscle cell loss

Funding from the Northwestern Vascular Surgery Scientist Training Program: NHLBI Ruth L. Kirschstein National

• Funding from 2023 Vascular & Endovascular Surgery Society (VESS) Resident Research Award

References