

Licochalcone A is an excellent candidate for preventing luminal and non-luminal breast cancers Atieh Hajirahimkhan¹, Elizabeth T. Bartom², Sriram Chandrasekaran³, Ruohui Chen⁴, Jeremy J Johnson⁵, Susan E. Clare¹, Seema A. Khan¹

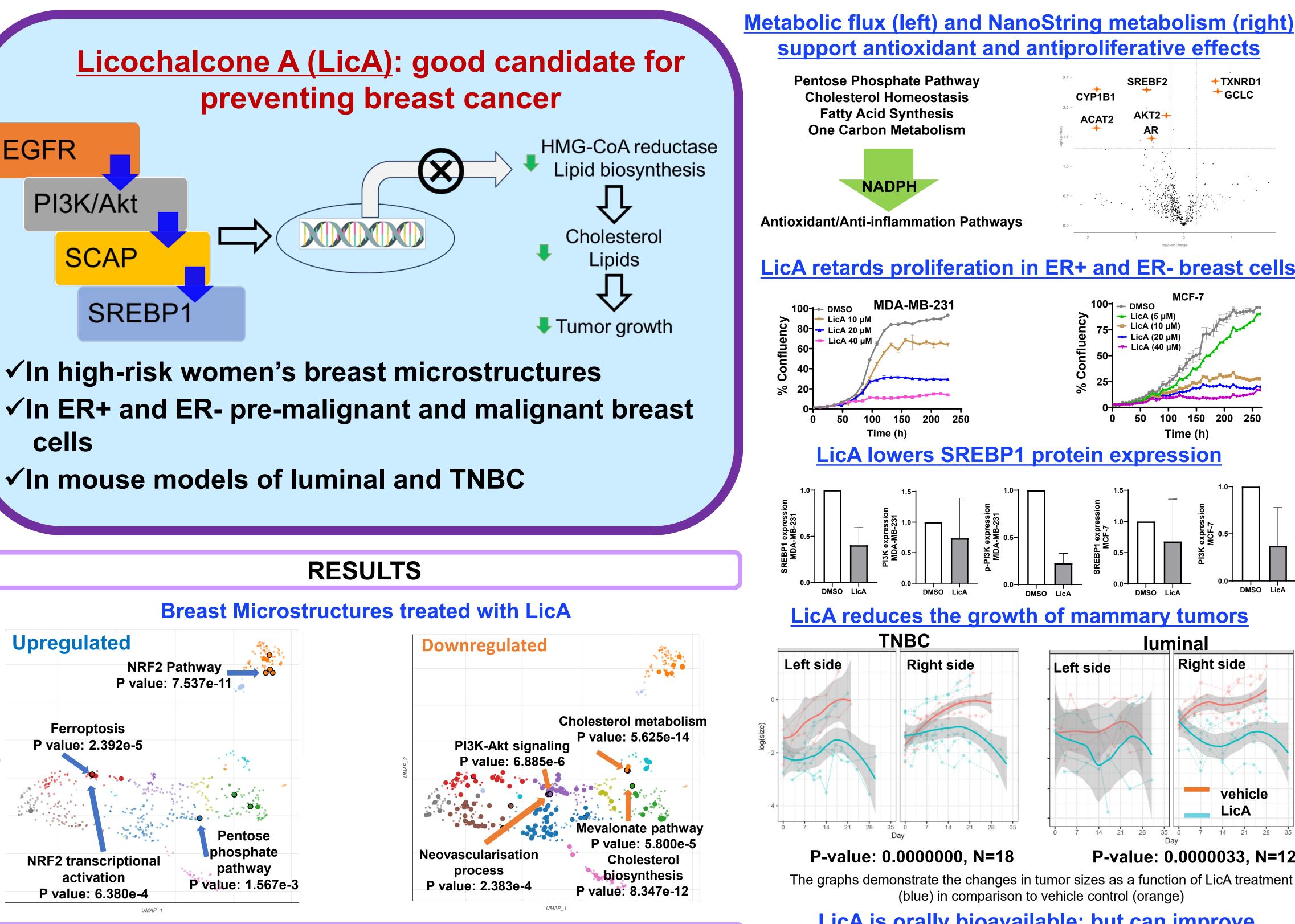
¹Division of Breast Surgery, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, ²The Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Northwestern University, Chicago, ³Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI., ⁴Department of Preventive Medicine, Northwestern University, Chicago, ⁵Department of Pharmacy Practice, University of Illinois, Chicago, IL.

BACKGROUND

- Proven breast cancer prevention drugs have side effects that are not acceptable to 85% of women at high risk for breast cancer.¹ There is no drug for preventing ER- cancer.
- Prevention strategies with optimal efficacy, less toxicity, and greater acceptance are needed
- Natural products are ideal candidates² if demonstrated to shift the breast microenvironment to a tumor preventive milieu with lower toxicity.
- Licochalcone A (LicA) from licorice inhibits aromatase activity and has antioxidant potential.^{3,4,5}

OBJECTIVES

- 1. Does LicA reprogram metabolism and antioxidant pathways in high-risk human breast tissue?
- 2. Does LicA retard cell proliferation and reduce tumor growth in vivo?
- 3. Pharmacokinetics: is LicA orally bioavailable?


METHODS

- Microstructures were prepared from contralateral unaffected breast tissue of two cohorts of 6 postmenopausal women with unilateral breast cancer.
- They were treated with DMSO and LicA (5 uM) for 24 h, prior to RNA \bullet extraction and total RNA sequencing.
- Differentially expressed genes (DEGs) were identified. Gene ontology (GO) pathway analysis identified pathways with combined enrichment scores >4 and FDR<0.05. DEGs were analyzed with computational metabolic **flux** analysis. Six additional subjects were studied with the NanoString metabolism panel.
- Live cell imaging/proliferation was analyzed in DCIS.COM/ER+ PR+, DCIS.COM, MCF-7, MCF-7aro, HCC1937, HCC-3153, and MDA-MB-231 cells treated with single and repeated doses of LicA.
- Western blot was performed on MCF-7 and MDA-MB-231 cells treated with LicA (10 µM) for 24 h.
- Xenografts in female athymic nude mice were created using luminal or • triple negative breast cancer cells, LicA was administered for 28 days at the dose of 80 mg/kg.day and rate of tumor growth was evaluated.
- **Oral bioavailability** in plasma, liver, and mammary tissue of BALB/c female mice was studied using LicA at a dose of 100 mg/kg.

Supported by the Postdoctoral Fellowships: American Cancer Society, RHLCCC Translational Bridge, NCI-CONSORT-T32, H Foundation Award, Department of Surgery Seed Funding, and by Bramsen-Hamill Fdn,

This presentation is the intellectual property of the author/presenter. Contact atieh.Hajirahimkhan@northwestern.edu for permission to reproduce, or distribute this poster

REFERENCES

- Mol. Cell. Endocrinol. 2021, 530: 111284
- 2. Pharmacol. Rev. 2016, 68: 1026
- 3. Chem. Res. Toxicol. 2015, 28: 2130.

- 4. Cancer Prev. Res. 2018, 11: 819.
- 5. bioRxiv, doi:10.1101/2022.05.06.490985
- 6. Genome Biol. 2019, 20: 49.

LicA is orally bioavailable; but can improve

Tissue	Tmax (hr)	Cmax (ng/mL)	AUCall (hr*ng/mL)	AUCINF_obs (hr*ng/mL)	Lambda_z (1/hr)
Plasma	2	295.52	2448.24	2433.07	0.23
Mammary	2	413.54	1910.4	1912.58	0.29