Single-center analysis of water wasted at operating room scrub sinks

Carolyn J. Hu^{1,2}, Imadh Khan³, Margaret Reilly², Deena El-Gabri², Andrew W. Hoel², Cord Sturgeon², Karen J. Ho^{1,2} ¹Northwestern University Feinberg School of Medicine, ²Northwestern Medicine Department of Surgery, ³Southern Illinois University School of Medicine

Background

- Healthcare systems adversely impact the environment through resource consumption, waste generation, and greenhouse gas emission¹⁻³
- Scrub sinks used for sterile hand scrubs are a source of operating room (OR) resource waste
 - Water is often left running after the conclusion of hand scrubs

Objective

To quantify water wasted at OR scrub sinks at a single center and identify modifiable factors for reducing water waste in the OR.

Methods

1. Observed scrubbing at 98 OR sinks at 2 academic hospitals; included sinks with electronic timers (N=84) and knee panels controls (N=14)

- Water waste = seconds of water flow after conclusion of a scrub
- Sampled water flow rates at both sink types
- 2. Anonymous, voluntary surveys to assess frequency of scrubbing with soap and water and scrub preferences 3. Estimate cost of water waste using annual water utility bill

Figure 1. OR Scrub Sinks. A: Sink with preset electronic timer; B: sink with knee panel controls; C-D: Scrub cycle options

Table 1. Operating Room Sinks

Floor	Knee-Operated Sink	Timer-Controlled Sink	Total
А	4	48	52
В	0	12	12
С	10	0	0
D	0	20	20
Total	14	80	94

Tim Flow R Water Sci

Affiliati

All Surgio Staf Attend Surgeo

Attend Specia

Ob/Gy Surger Ophth Ortho ENT Urolog

> Volum **(L**)

Cost

Table 2. Median water waste by sink type			
	All Sinks (N=94)	Knee-Operated (N = 14)	Timer-Controlled (N = 80)
e (min) [*]	2 (0.82; 3)	0 (0; 2)	2.02 (0.95; 3)
ate (L/min)	5.1 (4.6; 6.8)	6.5 (5.9; 6.8)	5.1 (4.5; 6.6)
Vasted per rub (L)	10.2 (3.7; 20.4)	0 (0; 27.1)	10.2 (4.2; 19.9)

Table 3a. Hand Scrub Habits of Survey Respondents

	Pospondonts	Турез	Types of sterile scrubs [*]			
on	(N)	Wet N (%)	Alcohol- Based N (%)	Both** N (%)	P value	Scrubs (N) [*]
	224	323 (25.9)	837 (67.1)	89 (7)		1247
al	63	111 (25.6)	300 (69.3)	22 (5.1)		433
ing ons	161	212 (26.0)	537 (66.0)	67 (8.2)	p=0.11	814

Table 3b. Attending Hand Scrub Habits Among Attending Surgeons

	Deenendente	Types of sterile scrubs*			Total
ng Ity	Respondents (N)	Wet N (%)	Alcohol- Based N (%)	Both** N (%)	Scrubs (N)
'n	77	82 (38.1)	98 (45.6)	35 (16.3)	215
ry	30	66 (28.6)	157 (68)	10 (4.3)	231
0	24	44 (28.8)	109 (71.2)	0 (0)	153
)	14	13 (13.3)	67 (68.4)	18 (18.4)	98
	8	5 (11.6)	38 (88.4)	0 (0)	43
ју	8	2 (2.7)	68 (91.9)	4 (5.4)	74

Ob/Gyn, Obstetrics and Gynecology; Ophtho, Ophthalmology; Ortho, Orthopedics; ENT, Otolaryngology *Refers to scrubs performed in 2-week period **Refers to wet scrub followed by alcohol-based scrub

Table 4. Estimated Annual Water Wasted in Pavilion A-D

	All cases (N=34,554)	Cases in OR With Knee-Operated Sinks (N=8996)	Cases in OR With Timer-Controlled Sinks (N=25,558)
ıe	301,498.9	0	301,498.9
	(124,146.6;804,601.2)	(0; 216,382.9)	(124,146.6; 588,218.4)
(\$)	891.17	0	891.17
	(366.95; 2,378.25)	(0; 639.59)	(366.95;1,738.66)

Values shown are median (interguartile range)

Results

The following assumptions were made in the analytic process to comply with resource restraints and institutional research policies:

- specialties

Conclusions

References

Observed 201 instances of OR sink use, 159 instances of water waste Median: 131 seconds (IQR 64, 182 seconds) of water wasted Water flow rates varied from 3-7 L/min; median flow rate 5.1 L/min • Median 10 L (IQR 5.440, 15.470 L) of water wasted per wet scrub • ~2000 L of water waste observed during the study period • More water wasted at timer-controlled sinks than knee-operated (P=.01) • Attending surgeons and OR staff perform wet scrubs in 25.9% of cases • OR users have significantly different scrub type preferences

• Estimated median total volume of water waste for 34,554 cases/year: 301,498.9 L (IQR 124,146.6; 804,601.2)

Limitations

• Water wasted and number of people scrubbed per case during 5-week observation period is representative of all scrub sink activity and all cases • Water flow rates are similar at all OR sinks

• Hand scrub habits of survey respondents are representative of everyone who scrubs in the OR despite skewed distribution of responding

• Recall of hand scrub habits of survey respondents is accurate

• The estimated median volume of water wasted is approximately the volume of water used in 6 months by an average American household of four⁴ or the volume of drinking water needed in one day by 94,000 people⁵ • We found significant differences in water waste between types of sink controls, agreeing with previous studies⁶⁻¹⁰

• We found significant differences in user scrub choice

• We encourage examination of facility characteristics and practices to develop and implement plans that will conserve water without compromising safety.

Lenzen M, Malik A, Li M, et al. *Lancet Planet Health*. Jul 2020;4(7):e271-e279. doi:10.1016/S2542-5196(20)30121-2

Eckelman MJ, Sherman J. PloS One. 2016;11(6):e0157014. doi:10.1371/journal.pone.0157014

Shoham MA, Baker NM, Peterson ME, et al. *Surgery*. Sep 2022;172(3):897-905. doi:10.1016/j.surg.2022.04.010

WaterSense US EPA. Indoor Water Use in the United States. Accessed April 14, 2024. https://19january2017snapshot.epa.gov/www3/watersense/pubs/indoor.html#:~:text=The%20average%20American%20family%20of.gall ons%20of%20water%20per%20day

Standing Committee on the Scientific Evaluation of Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, Institute of Medicine of the National Academies. Water. In: Institute of Medicine. 2005. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC: The National Academies Press. https://doi.org/10.17226/10925.

Potgieter MSW, Faisal A, Ikram A, et al. S Afr Med J. Mar 30 2020;110(4):291-295. doi:10.7196/SAMJ.2020.v110i4.14044 Kara A, Yasar C, Birinci M, et al. Acta Chir Orthop Traumatol Cech. 2021;88(3):229-232.

Petterwood J, Shridhar V. Aust J Rural Health. Aug 2009;17(4):214-217. doi:10.1111/j.1440-1584.2009.01074.x

Altinoz A SS, Mirza M, Ameri MA, et al. *Hamdan Med J.* 2021;14(2):78-81. doi:10.4103/hmj.hmj_72_20

10. Asfaw SH GU, Hata T, Moyle J, et al. J Clim Change Health. October 2021 2021;4:100076.