

Multivariate description of gait changes in a mouse model of peripheral nerve injury and trauma

Bilal A. Naved^{1, 2, 3}, Shuling Han^{1, 2}, Kyle M. Koss^{1, 2}, Mary J. Kando⁴, Jiao-Jing Wang^{1,2}, Craig Weiss⁴, Maya G. Passman⁵, Jason A. Wertheim^{1,2}, Yuan Luo, Zheng J. Zhang^{1,2}

¹Dept. of Surgery, ²Comprehensive Transplant Center, Feinberg School of Medicine, ³Dept. of Biomedical Engineering, ⁴Behavioral Phenotyping Core, ⁵Barnard College, ⁶Division of Health and Biomedical Informatics, Dept. of Preventive Medicine.

Background

- \sim 2 million people living with limb loss in the United States and >20 million with peripheral nerve injury of some form (Ziegler-Graham 2008).
- Experimental treatments like limb transplantation (VCA) or tissue engineering materials must be evaluated in animals.
- Methods of evaluating gait and neuromotor function in animals are univariate.
- However, treadmill gait monitoring systems generate multidimensional data.
- We found no rigorous multivariate evaluation of rodent treadmill gait in the literature.
- This absence spans across all models (e.g. Diabetic Neuropathy, ALS, MS, etc.)

Hypotheses

- Multivariate gait analysis will reveal biologically consistent relationships.
- There are latent factors that help intuitively understand gait.
- Not all measurable features are relevant for characterizing gait, there is a subset
- Using this subset to train models will be more accurate than using all features
- These models will be able to distinguish between different gait phenotypes, like how more features does a human eye can just by watching
- This can all be done using a limb transplant model developed by the CTC's microsurgery core (Fig. 1) in conjunction with the DigiGait in the BPC (Fig. 2).

Experimental Design

- We modeled increasing neuromusculoskeletal damage.
- Groups = control, nerve transection, limb tx.
- The microsurgery core has published a limb tx model that was used (Fig. 1).
- 14 animals in each group.
- After a 2-week recovery period animals were video taped walking on DigiGait.

Microsurgery and Preclinical Research Core

Multivariate Characterization

- - Univariate and multivariate dimensionality reduction were compared.
 - This included multiple hypothesis testing and forward selection resp.
 - The performance of a training algorithm was used to compare the two.
 - Multivariate feature selection led to 8% greater misclassification error.
 - Moreover, univariate selection appeared to yield overfitting (Fig. 3).
 - Factor Analysis was conducted to better understand relationships.
 - Six factors seemed to max loading and minimize variance (Fig. 4).
 - Upon examining the components of each of the six factors, biologically consistent relationships were observed (Table 1).
 - E.g. alterations to the anatomical configuration of the limb in tx and
 - Abberant fine motor function due to peripheral nerve injury.

Figure 4. Factor Analysis allows one to identify hidden (latent) factors in this case 6ish

Fac	tor Analysis Res	ults of Data Fro	om Pathological (Gait Due To Limb	Transplantation	
Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	
Swing	SL Var	StrideLength	Absolute Paw Angle	Swing	Brake	
Propel	Stride Length CV	Belt Speed	Midline Distance	%SwingStride	Propel	
Stride Frequency					%PropelStance	
Fa	actor Analysis R	esults of Data F	rom Pathologica	l Gait Due To Ner	ve Transection	
Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	
Propel	Brake	SL Var	Stride Length	Swing	Paw Area at Peak Stance in sq. cm	
Stride Frequency	%Propel Stance	Stride Length	Belt Speed	%SwingStride	Paw Area Variability at Pea Stance in sq. cm	
					Min dA/dT	
	Latent factor	s that describe	gait in the settin	g of traumatic ne	rve injury	
Relationship of stride Stride length and speed variat		length and its on	Measures of the paw	Measures of symmetry	Phases of the stride	
lotice key similarit he latent or implie atent factors are a actor analysis, wh	ies (unbolded) a d factors that ma n interpretation o ich quantifies the	nd differences (ke sense of the of the factor grou e relationship be	bolded) between various groups o upings shown abo tween individual,	the two datasets f observable mea ove. The factor gro measurable featu	. The bottom two rows describe sures shown above. These oupings were identified via ures and can be used to identify	

A. Performance in Distinguishing Peripheral Gait Deficit from Healthy Gait	Accuracy	Precision	Recall	F-Score
Random Forest	0.7294	0.7560	0.7521	0.7492
Discriminant Analysis	0.7477	0.8022	0.7634	0.7742
Support Vector Machine	0.7744	0.8108	0.7915	0.7948
Regression	0.7868	0.8570	0.7826	0.8130
Ensemble	0.9099	0.9283	0.9086	0.916
B. Performance in Distinguishing Between Two Phenotypes of Peripheral Gait Deficit: Limb Transplant from only Nerve Transection	Accuracy	Precision	Recal	F-Score
Random Forest	0.6435	0.7072	0.6852	0.6878
Discriminant Analysis	0.7165	0.7827	0.7188	0.7388
Support Vector Machine	0.6987	0.7806	0.7341	0.7457
Regression	0.7237	0.7882	0.7270	0.7456
Ensemble	0.8780	0.9263	0.8781	0.8984

heir accuracy, precision, recall, and F-score in their ability to distinguish (A) healthy gait from gait deficit due to ipheral nerve injury and (B) gait deficit due limb transplantation from gait deficit due to total nerve transection

Machine Learning Classification of Gait States

neim

- We used an 80-20 training-testing split with 10-fold cross validation.
- Five model architectures were evaluated (Table 2).
- Scores from the highest performing model architecture were plotted to evaluate the separation of their spreads + means (Fig. 5).

Figure 5. This visualizes the distribution of scores when the trained models were used to distinguish between different gait phenotypes. The models were able to distinguish between two distinct phenotypes with high statistical significance.

Results, Discussion, and Conclusion

- 16 features maximized predictive ability in contrast to the 32 available.
- This demonstrates the value of feature selection.
- Univariate selection performed 6% less accurately than multivariate selection.
- Multivariate selection did not help us understand exact relationships.
- Using factor analysis we identified the 6 latent factors most responsible for describing gait in the context of peripheral nerve injury and trauma.
- These 6 factors were composed of the 16 features and were biologically consistent revealing insights and hypotheses that were unable to without.
- Using the identified features, various models were trained.
- Ensemble-based classifiers achieved >90% classification accuracy with similarly high precision, recall, and F-score.
- Moreover, these classifiers were able to distinguish between the two different etiologies of gait with almost 90% accuracy as well.
- This is the first example of multivariate description and rodent gait classification between two different etiologies of deficit.
- This same technique could be used to make direct comparisons between completely different gait states or interventions.