You Are What You Eat: Harnessing Endothelial Cell Autophagy as a Potential Donor Organ Pre-treatment Strategy

Meredith E. Taylor^{1,2}, Dinesh Jaishankar^{1,2}, Luisa Andrade da Silva^{1,2}, Ashley P. Strouse^{2,5}, Yu Min Lee^{1,2}, Satish N. Nadig^{1,2,3,4} ¹Department of Surgery, Feinberg School of Medicine, ²Division of Organ Transplant and Comprehensive Transplant Center, ³Department of Microbiology, Immunology, and Pediatrics, ⁴Simpson Querrey Institute, ⁵Northwestern University, Weinberg College of Arts and Sciences

INTRODUCTION

- cardiac transplants were • 4.545 donor deceased performed in the United States in 2023¹.
- The donor hearts are inevitably subjected to ischemiareperfusion injury (IRI) that triggers a sequelae of adverse effects.
- IRI is first encountered by microvascular endothelial cells^{2,3} (ECs), causing endothelial injury and predisposing the donor heart to higher immunogenicity².
- Endothelial autophagy, or "self-eating," the process of disposing of and recycling cellular machinery, has been implicated as a response to cardiac IRI^3 .

Figure 1:The cumulative impact of procurement, preservation, and transplantation on the cardiac microvascular endothelial cell (EC) barrier of the allograft. Warm ischemia during donor death and organ recovery, followed by cold ischemia during preservation and transport, and finally, reperfusion upon implantation results in a summative microvascular EC injury. EC injury then triggers a cascade of innate and adaptive immunological signaling, pre-disposing the donor hearts to higher immunogenicity.

RESEARCH OBJECTIVES

- 1)Describe changes in cardiac microvascular EC <u>autophagy</u> during CS and IRI.
- 2)Understand whether the impact of EC autophagy is protective or detrimental as related to IRI and cellular immunogenicity.

METHODS Treatment during storage Mouse cardia endothelial ce culture Immunoblotting

Figure 2: Modeling ischemia reperfusion injury (IRI) in vitro using mouse cardiac endothelial cells (MCECs). To mimic conditions of the donor heart during cold preservation and warm reperfusion, we subjected a monolayer of MCECs to either 6 hours in a hypoxic chamber at 4°C with University of Wisconsin (UW) solution or incubation in media at 37°C. Then, warm reperfusion was simulated by exchanging the UW solution for warm medium. ECs were processed for ELISA, immunoblotting, or imaging at times 0-24 hours post-reperfusion. For pharmacological modification of autophagy, ECs were either pre-treated in culture before storage and reperfusion or were treated during the storage period.

Figure 3: Early reperfusion injury in mouse cardiac endothelial cells (MCECs) enhances autophagy. (A) Immunoblots from MCEC lysates were probed for the autophagic marker LC3B. Quantification of the LC3B II/ LC3B I ratio demonstrated no change between normothermic (NT) and cold storage (CS) at 0-, 16-, and 24- hours post warm reperfusion (p=0.65, p=0.22, p=0.91). A statistically significant increase between NT and 2 hours post-reperfusion was observed (p=0.01). (B) Representative confocal images showing similar autophagosome formation in MCECs immediately following reperfusion and increased autophagosome formation in MCECs following CS and 2 hours post-reperfusion in comparison to NT conditions (green: autophagosomes, blue: nuclei, scale bar: 10 µm).

Figure 5: Modeling CD8+ T-cell response following ischemia-reperfusion injury in vitro using mouse cardiac endothelial cells (MCECs) demonstrated increased T-cell activation in Atg5 knockout cells. (A) (1). Wildtype (WT) MCECs were injected into WT BL/6 mice for sensitization, and spleens were procured for CD8+ T-cell isolation following a 3-week period (2). WT, Atg5^{-/-}, or mock-transfected control MCECs were cultured in 48-well plates and subjected to injury or control conditions (3). CD8+ T-cells were added to plates in co-culture and incubated at basal conditions for 7 days, after which cell supernatants were collected for interferon-gamma and granzyme B ELISA analysis. (B) Interferon-gamma and granzyme B levels were significantly increased in supernatants of Atg5^{-/-} MCECs following EC-T-cell co-culture with Mock control or Atg5^{-/-} MCECs following cold storage and warm reperfusion (p=0.018, p=0.015).

CONCLUSIONS

- MCEC autophagy increases during early post-reperfusion time points, likely as a natural adaptation to stress.
- EC autophagy may be protective during IRI by mitigating EC **immunogenicity**, as deletion was deleterious to cell health.
- Bolstering microvascular EC autophagy in donor hearts during CS prior to transplantation may mitigate insults incurred during IRI.
- Delivery of autophagy-inducing rapamycin via nanoparticles to cardiac ECs has the potential to increase the longevity of cardiac allografts and reduce the burden of systemic immunosuppression.

RESULTS

in Atg5^{-/-} MCECs following CS-WR was also significantly higher (p=0.01; p=0.01), and CD80 trended heavily towards increase but did not reach statistical significance (p=0.06).

Figure 6: Pharmacologic autophagy induction in ECs prior to cold storage decreased EC immunogenicity. (A) Confocal imaging autophagosomes (green) and nuclei (blue) comparing untreated MCECs t rapamycin or rapamycin plus chloroquine pre-treatment. (B) LC3E immunoblotting showed LC3 II/ LC3 I was significantly increased rapamycin or rapamycin-chloroquine combination-treated MCECs (p= 0.036 p=0.016). (C) There was a significant decrease in interferon gamma between untreated and rapamycin pre-treated MCECs following co-culture of MCECs and CD8⁺ T-cells (p<0.001).

ACKNOWLEDGEMENTS • This study was supported by NIH/NIAID R01 AI142079-01A1 to SNN. • Research was supported, in part, by the National Institutes of Health's National Center for Advancing Translational Sciences, Grant Number TL1TR001423 to MET. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. NUCATS

Northwestern Medicine Feinberg School of Medicine

Figure 7: Rapamycin loaded polymerosomes (rPS) are taken up by mouse cardiac endothelial cells (MCECs) during cold storage, bolster autophagy, and decrease EC immunogenicity (A) Uptake of rPS in MCECs. Mitochondrial staining (red) was used to provide intracellular context, with nuclei (blue) and rPS (aqua blue with white arrows). (B) MCEC viability was found to be similar amongst titrations of rPS and PS. (C) Immunoblotting of rPStreated MCEC lysates under cold storage-warm reperfusion showed increased autophagy via measurement of LC3 II/ LC3 I. (D) Interferon-gamma and granzyme B levels were significantly decreased in the rPS-treated cells following EC-T-cell co-culture (p=0.002p=0.001). Interferon-gamma and granzyme B decreased when comparing untreated cells to those treated with PS (p=0.074, p=0.005).

REFERENCES

- . Continued increase in organ donation drives new records in 2023; New milestones exceeded. UNOS News Bureau. 04/22/24, 2024. Updated 01/10/2024. Accessed 04/22/24, 2024.
- 2. Tran DT, Tu Z, Alawieh A, et al. Modulating donor mitochondrial fusion/fission delivers immunoprotective effects in cardiac transplantation. Transplantation American Journal ot 2022;22(2):386-401. doi:10.1111/ajt.16882.
 - 3. Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. Vasc *Dis Prev*. 2010;7:1-14. doi:10.2174/1874120701007010001.